Kinetic interfaces of patchy particles
نویسندگان
چکیده
منابع مشابه
Self-Assembly of Patchy Particles.
Molecular simulations are performed to study the self-assembly of particles with discrete, attractive interaction sites - "patches" - at prescribed locations on the particle surface. Chains, sheets, rings, icosahedra, square pyramids, tetrahedra, and twisted and staircase structures are obtained through suitable design of the surface pattern of patches. Our simulations predict that the spontane...
متن کاملLiquid-vapor interfaces of patchy colloids.
We investigate the liquid-vapor interface of a model of patchy colloids. This model consists of hard spheres decorated with short-ranged attractive sites ("patches") of different types on their surfaces. We focus on a one-component fluid with two patches of type A and nine patches of type B (2A9B colloids), which has been found to exhibit reentrant liquid-vapor coexistence curves and very low-d...
متن کاملCrystallization of tetrahedral patchy particles in silico.
We investigate the competition between glass formation and crystallization of open tetrahedral structures for particles with tetrahedral patchy interactions. We analyze the outcome of such competition as a function of the potential parameters. Specifically, we focus on the separate roles played by the interaction range and the angular width of the patches, and show that open crystal structures ...
متن کاملPredictive supracolloidal helices from patchy particles
A priori prediction of supracolloidal architectures from nanoparticle and colloidal assembly is a challenging goal in materials chemistry and physics. Despite intense research in this area, much less has been known about the predictive science of supracolloidal helices from designed building blocks. Therefore, developing conceptually new rules to construct supracolloidal architectures with pred...
متن کاملDesign of patchy particles using quaternary self-assembled monolayers.
Binary and ternary self-assembled monolayers (SAMs) adsorbed on gold nanoparticles (NPs) have been previously studied for their propensity to form novel and unexpected patterns. The patterns found were shown to arise from a competition between immiscibilty of unlike surfactants and entropic gains due to length or other architectural differences between them. We investigate patterns self-assembl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Condensed Matter
سال: 2015
ISSN: 0953-8984,1361-648X
DOI: 10.1088/0953-8984/27/19/194123